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ON THE ADEQUACY OF A SUBSTRUCTURAL LOGIC
FOR MATHEMATICS AND SCIENCE

By Neil Tennant∗

Williamson argues for the contention that substructural logics are ‘ill-suited to acting as background
logics for science’. That contention, if true, would be very important, but it is refutable, given what
is already known about certain substructural logics. Classical Core Logic is a substructural logic, for
it eschews the structural rules of Thinning and Cut and has Reflexivity as its only structural rule.
Yet it suffices for classical mathematics, and it furnishes all the proofs and disproofs one needs for the
hypothetico-deductive method in science. We explain exactly what Classical Core Logic is, why it is a
substructural logic par excellence, and what the basic requirements would be for a logic to be ‘suited to
acting as [a] background logic for science’. We also explain how Classical Core Logic meets all these
requirements. We end by examining Williamson’s argument in order to expose where its error lies.

Keywords: sequent calculus, substructural logic, adequacy for science and mathe-
matics, cut, thinning, Intuitionistic Logic, Classical Logic, Core Logic, Classical Core
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I. INTRODUCTION

Our aims here are twofold:

(1) We shall show that Williamson’s recent critique of substructural logics in
general is seriously flawed.

(2) We shall show that the substructural system of Classical Core Logic is
adequate unto all the deductive demands of science and mathematics.

As to aim (1): Williamson has recently argued for the contention that sub-
structural logics are ‘ill-suited to acting as background logics for science’. That
contention is refutable, given what is already known about the substructural
systems of Classical Core Logic C+ and its constructive subsystem Core Logic
C. Relevant details about the two Core systems can be found in Tennant (2017).

The reader may rest assured, however, that this study will provide all the
expository detail that could possibly be needed for the dialectical purpose of
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refuting Williamson’s contention and locating the fallacy in his argument for
it. It is enough, for the purposes of this critique, to speak only about Classical
Core Logic. As it happens, its constructive subsystem Core Logic suffices both
for constructive (intuitionistic) mathematics and for the hypothetico-deductive
method in science. However, limitations of space preclude us from reprising
that further case here, which can be found in the book just cited.

As to aim (2): We intend to inform and persuade the ‘general philosopher’
of the reasons for, and importance of, any claim of the form ‘Such-and-such
logical system, or kind of logical system, is adequate unto all the deductive
demands of science and mathematics’. So we shall need to explain the dif-
ference between structural and substructural logics, and show how Classical
Core Logic C+, which (like its constructive subsystem C of Core Logic) is
substructural par excellence, is indeed adequate unto all the deductive demands
of science and mathematics. The two Core systems are not just very good
exemplars of the family of substructural logics, they are extreme exemplars. For
they are maximally substructural, qua set-sequent calculi (a description of which
will be provided presently).

Since the notion of a substructural logic involves recourse to the so-called
structural rules of Gentzen-style sequent-calculus, our discussion will confine
itself to that setting. As it happens, there is a deep isomorphism—and for deep
reasons—between the sequent calculi for the Core systems, and their respective
systems of natural deduction. In the Core systems, natural deductions have
directly corresponding sequent proofs of the same results, possessed of the same
macro-inferential structure, and conversely.1 The generality of our conclusions
will therefore not be compromised by confining our attention to just the
sequent-calculus setting.

We shall focus on set sequents, in the setting of single-conclusion logic. This
means we shall be considering only sequents of the form � : �, where �
is a finite set of sentences, and � is empty or contains exactly one sentence.
We stress again that the generality of our conclusions will not thereby be
compromised. The Core systems C and C+ are single-conclusion, set-sequent
calculi.

Single-conclusion calculi are the most natural choice for the regimentation
of mathematical and scientific reasoning.2 That is why we are confining our
attention to them.

Moreover, set-sequent calculi are by far the simplest ones. They involve at
most the three possible structural rules of reflexivity, thinning, and cut (for

1 See Tennant (2017: 131–2) for further details.
2 Cf. Steinberger (2011: 334): ‘. . . there are no episodes in our ordinary modes of deductive

reasoning that can be said to be more faithfully represented in a multiple-conclusion framework
than in a single-conclusion system.’
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which, see Section II).3 Anyone who challenges this ‘at most’ claim will be
making it even harder to deny that C and C+ are substructural logics.

II. GENTZEN SEQUENT CALCULUS FOR C AND C+

This section is devoted entirely to setting out formal details about the sequent
calculus for Classical Core Logic.

Sequents are complex singular terms (in the metalanguage) of the form

� : �,

where, as already mentioned, � is a finite set of sentences (the so-called
‘antecedent’ of the sequent) and � (the so-called ‘succedent’ of the sequent) is
either the empty set ∅ or the singleton {ϕ} of a sentence ϕ. The antecedent �
can also be the empty set ∅. The succedent is ‘at most’ a singleton because the
Core systems are single conclusion logics. The colon can be read as ‘therefore’.

In place of � : {ϕ} we usually write � : ϕ. In place of �∪�′, we usually
write �, �′.

An interpretation (or model) of the non-logical vocabulary that makes every
sentence in a given set of sentences true is said to satisfy that set, and a set of
sentences is said to be satisfiable just in case some interpretation satisfies it.

The logical or semantic import of a sequent � : � is the usual one, as
follows:

Any interpretation that satisfies � makes at least one sentence in � true.

If this holds of every sequent � : � provable in a system, then the system is
said to be sound.

Interesting special cases of sequents are the following, or are of the following
forms. The reader should bear in mind the semantic import of a sequent when
reading the following comments.

Sequent Comment
∅ : ∅ Not provable in a sound system
∅ : ϕ If provable in a sound system, then ϕ is logically true
� : ∅ If provable in a sound system, then � is not satisfiable
� : ϕ If provable in a sound system, then � logically implies ϕ

3 The main alternatives to using set-sequents are to take antecedents and succedents of
sequents to be either multisets or sequences of sentences, and, accordingly, to adopt further
structural rules—contraction for multisets, and, in addition, interchange for sequences. (See
Gentzen (1934, 1935: 192), where contractionwas stated as zusammenziehung, and interchange
as vertauschung.) These alternatives (i.e., sequent calculi whose sequents are composed of
multisets or sequences) can safely be ignored, however, for the dialectical purposes of this study.
They also become irrelevant—indeed, inapposite—to the logician who works with a set-sequent
calculus.
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When sentences are separated by commas from sets of sentences in the
antecedent of a sequent, the presumption is that those sentences are not
members of those sets.

A blank to the right of a colon (for an empty succedent) could be occupied
by the symbol ⊥ (absurdity) or the symbol ∅ for the empty set. The upshot is
the same: if one has a proof of a sequent of the form

‘� : ’ (which can also be written ‘� : ∅’, or ‘� : ⊥’),

then one has thereby shown that � is not satisfiable.
The Core systems, because they are based on set sequents, have only one

structural rule:

reflexivity ϕ : ϕ.

Proofs, after all, have to get started.
Rule-labels of the forms (@:) and (:@) can be written as (@L) and (@R)

respectively—‘@ on the left’ and ‘@ on the right’ (of the colon). These rules
are sometimes called ‘operational’ or ‘logical’ rules.

Here now are the logical rules—the Left and Right rules—of Core Logic C

for the logical expressions (the connectives ¬, ∧, ∨, and →; the quantifiers ∃
and ∀; and the identity predicate =). They ought to strike the reader as very
familiar. They are all either primitive or derivable in the system of Intuitionistic
Logic. Their occasional differences from the original Left and Right rules of
Gentzen are delicate and subtle—but have profound and welcome effects.
They afford both relevance of premises to conclusions of proofs, and transitivity
of deduction with epistemic gain, without having to appeal to a structural rule of
cut. Instead, the logical rules below are framed in such a way that one can
prove (at the meta-level, of course) that cut is admissible.4 The proof of this
result (Metatheorem 1, Section IV) is constructive. It can be carried out in
Core Logic at the meta-level, even for Classical Core Logic as the logic of the
object language.5

4 For the distinction between admissible and derivable rules, see Hiż (1959).
5 Metatheorem 1 was constructively established in Tennant (2015b).
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The Official Sequent Rules of Core Logic C

(: ¬)
ϕ, � : ∅
� : ¬ϕ

(¬ :)
� : ϕ

¬ϕ, � : ∅

(: ∧)
� : ϕ � : ψ

�, � : ϕ∧ψ
(∧ :)

� : θ

ϕ∧ψ, �\{ϕ, ψ} : θ
where � ∩ {ϕ, ψ} �= ∅

(: ∨)
� : ϕ

� : ϕ∨ψ

� : ψ

� : ϕ∨ψ
(∨ :)

ϕ, � : � ψ, � : �

ϕ∨ψ, �, � : � ∪ �
where � ∪ � is at most a singleton

(: →)(a)
�, ϕ : ∅

� : ϕ→ψ
(→ :)

� : ϕ ψ, � : θ

ϕ→ψ, �, � : θ

(: →)(b)
� : ψ

�\{ϕ} : ϕ→ψ

Some syntactic definitions for the quantifier rules. ψx
t is the result of substituting occur-

rences of the closed term t for all free occurrences of the variable x in the for-
mula ψ; and ψa

x is the result of substituting occurrences of the variable x for all
occurrences of the parameter a in the formula ψ, where a is not within the scope
of any quantifier in ψ that binds x; and a parameter a is a special case of a closed
term. A sequent with the symbol a� next to it contains no occurrences of a.

(: ∃)
� : ϕx

t

� : ∃xϕ
(∃ :)

ϕx
a , � : ψ

∃xϕ, � : ψ a�
(: ∀)

� : ϕ

� : ∀xϕa
x a� (∀ :)

ϕx
t1

, . . . , ϕx
tn
, � : θ

∀xϕ, � : θ

(: =) ∅ : t = t
(= :)

� :ϕ
�, t =u :ψ

where ϕt
u = ψt

u

Classical Core Logic C+ is obtained from Core Logic C by adding the rule
of Classical Reductio:

(CR)
¬ϕ, � :

� : ϕ

What sets Core Logic apart from Intuitionistic Logic, and Classical Core Logic
apart from Classical Logic, is that the Core systems eschew the structural rules
of thinning and cut:
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thinning
� : �

ϕ, � : �
(on the left);

� :
� : ϕ

(on the right)

cut
� : ϕ ϕ, � : 	

�, � : 	
The Core systems eschew them because each leads to irrelevance. They are the
sole culprits, respectively, in the following two sequent proofs of Lewis’s First
Paradox A, ¬A : B, which is anathema to the relevantist:

A : A
A , ¬A : ∅ thinning
A , ¬A : B

A : A
A : A ∨ B

A , ¬A : ∅ B : B

A ∨ B, ¬A : B
cut

A , ¬A : B

By not incorporating these culprit structural rules, the Core systems C and C+
relevantize Intuitionistic Logic and Classical Logic, respectively, ‘at the level of
the turnstile’. For the exact sense in which the premises of proofs are relevant
to their conclusions (in both the core systems), see Tennant (2015c).

The Core systems’ lack of both thinning and cut, however, does not prevent
them—as we shall see in due course—from accomplishing all that one could
require of a (constructive, respectively, classical) logic for the formalization of
deductive reasoning in mathematics and science.

Both C and C+ are obviously substructural logics. Indeed, one could say:
substructural with a vengeance. One can advance this claim even in the absence of
any detailed explication of what, in general, is to count as a substructural logic.
All that one needs to do is re-read Gentzen (1934, 1935), where the contrast
between structural and logical rules was first introduced and clarified, to be
persuaded that any logical system whose sole structural rule is reflexivity is
indeed substructural. This interpretative point will be further confirmed in
Section III.1.

Point of terminology for the non-specialist in formal logic:
When a sequent � : {ϕ} is the conclusion of a proof in the sequent calculus,

one writes the ‘single-turnstile’ statement ‘� � ϕ’, which one can read as ‘ϕ
is deducible from �’. Likewise, when a sequent � : ∅ is the conclusion of a
proof in the sequent calculus, one writes ‘� � ∅’ or ‘� � ’ or ‘� � ⊥’, each of
which one can read as ‘absurdity is deducible from �’. When it is important
to mention the logical system whose deducibility relation is in question, one
can use a subscript on the single turnstile:

Core Logic C � �C ϕ � �C ∅ � �C ⊥
Classical Core Logic C+ � �C+ ϕ � �C+ ∅ � �C+ ⊥
Classical Logic C � �C ϕ � �C ∅ � �C ⊥
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III. THE STRUCTURE OF THE DIALECTIC

Some less formal discussion will now be in order about the general logical
issues that we need to be clear about in our critique of Williamson, for these are
philosophically important. Two issues need to be clarified: What do logicians
and philosophers mean by the term ‘substructural logic’? And what is it for
a logic (of any kind) to be well-suited for science and mathematics? We shall
address these in turn.

III.1 On logics being substructural

The designation ‘substructural logic’ is due to Došen and Schroeder-Heister
(1993). On p. 2 of his historical introduction (Došen 1993) to that jointly edited
volume, Došen remarks that

A very important discovery in Gentzen’s thesis [1935] is that in logic there are rules of
inference that don’t involve any logical constant. Gentzen called such rules structural.6

Došen went on to write (p. 6)

Our proposal is to call logics that can be obtained . . . by restricting structural rules,
substructural logics. (First emphasis added.)

This understanding of the designation ‘substructural logic’ is endorsed also by
Restall (2000: 1), where he writes

Substructural logics focus on the behaviour and presence—or more suggestively, the
absence—of structural rules.’ (Both emphases in the original.)7

It is this understanding of the designation ‘substructural logic’ on which we
are proceeding here,8 in addressing Williamson’s contention that such logics
are ill-suited for science and mathematics.

Without the structural rule of reflexivity, no sequent proof in any logical
system could even get started. The two main systems of first-order extensional
logic that are of interest to the philosopher, however—Classical Logic and
Intuitionistic Logic—are, in the Gentzenian tradition of sequent calculus, ‘fully
structural’. By this we mean that their sequent systems contain, in addition to
reflexivity, the structural rules of thinning and of cut.

One can profitably investigate, however—and it was this line of investigation
that led to the Core systems—whether the two traditional structural rules

6 The discovery of structural rules was actually due to Hertz (1928); see Gentzen (1932) and
Tennant (2015a).

7 Restall’s attribution of the designation to Schroeder-Heister and Došen, in fn. 1 across pp. 1–
2 is of course correct, but slightly misleading in making the reader think that the introduction to
their jointly edited volume was jointly written. When Došen wrote of ‘Our proposal’ on p. 6, he
was speaking for both editors; but in his own, singly authored, historical introduction.

8 Unfortunately, Došen (1993: 1) was simply in error in saying that ‘[t]he most important
substructural logic is intuitionistic logic’. Intuitionistic Logic, formulated with sequents whose
antecedents are sets of sentences and whose conclusions are at most singletons, has all three
structural rules that such a sequent system might employ: reflexivity, thinning, and cut.
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of thinning and cut are really necessary in order for a logical system, in
its sequent-calculus formulation, to furnish what is required for adequate
regimentation of our deductive reasoning within mathematical and scientific
theorizing.

III.2 On logics being well-suited or ill-suited for science

An explication of the just-mentioned requirement is crucial for any assessment
of a particular logical system, or logical systems of some general kind, as either
‘well-suited’ or ‘ill-suited’ for such theorizing.

A claim of such ill-suitedness is what a logician would call an informal claim,
not susceptible of formal proof. This is because neither well-suitedness nor its
contradictory, ill-suitedness (for science), has been precisely explicated.

Think of the analogous negative claim that there is no effective method (the
pre-formal notion in need of explication) for determining, of a given sentence,
whether it is logically true. To establish this kind of negative claim in a rigorous
fashion, one requires, first, an explication of the notion of ‘effective method’.
One requires, second, a formal, rigorous proof that there is no method of
the explicated kind that will enable one to determine, of any given sentence,
whether it is logically true. This is exactly what was required for Alonzo
Church’s famous theorem on the undecidability of first-order logic. Church
proved the formal result that there is no recursive function that yields the value 1
on (the code number for) any sentence that is logically true and yields the value
0 on (the code number for) any sentence that is not logically true. This serves
to establish the non-existence of any effective method for determining whether
a given sentence is logically true—but only by courtesy of ‘Church’s Thesis’ in
the background, to the effect that every effective method can be expressed as a
recursive function defined on the natural numbers. Kurt Gödel’s famous First
Incompleteness Theorem for arithmetic, on our contemporary understanding
of its most general form, relies on Church’s Thesis in the same way. The Gödel
result is nowadays stated in this general form: there is no recursive enumeration
of (the code numbers for) all and only the true sentences of arithmetic. By
Church’s Thesis, it follows that one cannot effectively enumerate all and only
the true sentences of arithmetic.9

It therefore behooves Williamson, when he says that (all) substructural logics
are ‘ill-suited to acting as background logics for science’, to be prepared to
furnish an explication of the notion of suitedness or ill-suitedness that is at
issue. The burden of explication of this notion is on him, for he is the one
making the negative claim. Here, however, we shall relieve him of this burden
by providing such explication in Section VI.

9 Gödel’s original theorem was that a particular axiomatic system for Peano Arithmetic, if it
is consistent, neither proves nor refutes a certain sentence that he constructed. See Tarski et al.
(1953) for the more general and powerful form of the First Incompleteness Theorem.
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Moreover, there was a second burden of explication on Williamson, which
went undischarged. He needed also, for the same reason, to explicate the very
notion of a substructural logic, in order to make his negative claim stick. We have
already explicated this notion for him in Section III.1.

III.3 How explications can clarify what is at issue

Only when both notions have been explicated—substructural logic, and logic
suited for science—and thereby sharply delineated for technical investigation, can
Williamson offer any dispositive proof that their extensions do not overlap. He
asks his reader to be persuaded that the picture is like this:

In the absence of the required explications (which is the situation at present),
Williamson remains vulnerable to the following dialectical move from his critic:

Here is a logic (call it 
) that, in advance of any precise explication of the notion
of a substructural logic, is intuitively and obviously substructural. (Indeed, any proffered
explication of ‘substructural logic’ would have to be rejected out of hand if this particular
logic 
 were not thereby counted as substructural.)
And here is a set (call it R—see Section VI) of requirements on the deducibility relation of
any logic that is to be regarded as ‘suited for science’. These requirements are individually
necessary and jointly sufficient for a chosen logic to be suited for science. They have
been formulated with careful attention to what mathematicians and scientists actually
require of a formal logic that is to serve the deductive needs of their discipline.
Now note this: the logic 
 satisfies the requirements R—indeed, provably so. See the
rigorously established metatheorems in Section V.

Williamson is therefore confronted with what we maintain is the actual
situation, which looks more like this:
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Moreover, the only way out that Williamson might have, to get the depicted
situation to look like this:

is to propose some additional requirement that ought to be, but is not at
present, in R, and demonstrate that the logic 
 does not satisfy that additional
requirement.

The critic would therefore be seeking from Williamson an account of how
he (Williamson) would propose to strengthen our explication R (of suitedness
for science—see Section VI) to such a would-be R+.

IV. ADMISSIBILITY OF CUT

The following metatheorem for C and C+ shows that these systems afford
transitivity of deduction in an epistemically gainful fashion, despite not containing
the rule of cut. This metatheorem establishes the admissibility of cut in a very
strong form, even though cut is not a rule of the systems.10

Metatheorem 1 (cut for epistemic gain).
There is an effective method (a binary operation) [ , ] on proofs such that for any proof

� of the sequent � : ϕ and any proof � of the sequent ϕ, � : ψ, the object [�, �] is a
proof of some subsequent of the sequent �, � : ψ.

The metalogical proof of Metatheorem 1, even for the classical system C+,
was carried out using only Core Logic C in the metalanguage.11 Note that

10 A weaker form of admissibility would be the metalogical inference

� � ϕ ϕ, � � ψ

�,� � ψ
.

(Note that this is not a rule of cut in the system, because it has single turnstiles in place of
the colons.) But the displayed metalogical inference, unlike Metatheorem 1, does not guarantee
that a proof-witness for the deducibility statement that is the conclusion of this inference can
be determined from proof-witnesses for the deducibility statements that are the premises of the
same. This effective determination, however, is exactly what Metatheorem 1 guarantees.

11 See Tennant (2012) for the proof of Metatheorem 1 for Core Logic, and Tennant (2015b)
for its extension to Classical Core Logic.
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in general � : ⊥ (i.e., � : ∅) is a subsequent of � : θ. So if the effectively
determined proof [�, �] does not establish ψ from �, �, it establishes the
inconsistency of �, �. That is why this form of transitivity of deduction can yield
epistemic gain.

Metatheorem 1holds for Core Logic, and for Classical Core Logic. Likewise,
the following obvious corollary holds for each of those systems. One may read
the turnstile as core deducibility, or as classical core deducibility, respectively.

Corollary 1 (cut for absurdity).
If � � ϕ and �, ϕ � ⊥, then �, � � ⊥.

V. SOME IMPORTANT METATHEOREMS

We now turn to a consideration of some standard semantical fare: models,
logical consequence, and (importantly exploiting the semantical notion of
logical consequence) soundness and completeness theorems. This is to prepare
the ground for our explication in Section V of what it would be for a logic to
be adequate unto the deductive demands of mathematics and science.

In the following metatheorems, the notion of ‘model’ employed is the stan-
dard one due to Kemeny (1948), building on the seminal work of Tarski (1956;
first published in 1936), subsequently deployed in standard texts such as Bell
and Slomson (1969) and Chang and Keisler (1977), and now widely used in the
formal semantics for extensional first-order languages. The central semantical
notion of logical consequence, represented by the familiar ‘double turnstile’
|=, is defined by generalizing over models in the familiar way:

Definition 1. � |= ϕ ⇔df for every model M, if every sentence in � is true-in-M,
then ϕ is true-in-M also.

Metatheorem 2. � ��C+ ⊥ ⇒ � has a countable model.

Proof. By easy application of Henkin’s method. It turns out that the only
structural feature of the deducibility relation that is needed for this result is
cut for absurdity (Corollary 1), which holds for Classical Core Logic C+. �
Metatheorem 3. � has no model ⇒ � �C+ ⊥ .

Proof. Suppose for conditional proof that � has no model. Suppose for classical
reductio ad absurdum that � ��C+ ⊥. By Metatheorem 2, � has a (countable)
model. This contradicts our supposition for conditional proof. Hence by clas-
sical reductio ad absurdum we may conclude � �C+ ⊥. �

Metatheorem 3 tells us that Classical Core Logic C+ deductively reveals all
incoherencies (non-satisfiabilities).

tennant.9
Highlight
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Metatheorem 4. (Soundness of C+)

� �C+ ϕ ⇒ � |= ϕ .

Metatheorem 4 is no surprise, since C+ is a subsystem of Classical Logic.
Classical Core Logic C+ also enjoys the following form of completeness.

Metatheorem 5. (Completeness of C+)

(� has a model and � |= ϕ) ⇒ � �C+ ϕ .

VI. EXPLICATION OF A LOGIC’S BEING SUITED FOR SCIENCE

We shall now assemble R, our explication of the properties required of a logic
for it to be ‘suited for science’. Soundness of proof is an obvious sine qua non:

� �C+ ϕ ⇒ � |= ϕ.

Recall Metatheorem 3:

� has no model ⇒ � �C+ ⊥ .

This marks one end of a spectrum of ‘logical needs’. Our logical system must
enable us to detect all incoherencies. Classical Core Logic C+ does this.

At the other end of the spectrum, we have the following special case of
Metatheorem 5, by setting � = ∅:

ϕ is true in every model ⇒ �C+ ϕ .

Our logical system must enable us to prove all logical truths. Classical Core
Logic C+ does this.

As another special case of Metatheorem 5 we have, in the middle range of
the spectrum, so to speak, for non-empty �:

� has a model
ϕ is falsifiable

� |= ϕ

⎫⎬
⎭ ⇒ � �C+ ϕ .

Our logical system must enable us to derive, from any satisfiable set � of
axioms—as is typically the case in mathematics—every sentence ϕ that is not
logically true but follows logically from �. (Any proof of such a sentence ϕ
from � must accordingly have as a premise at least one of the axioms in �.)
Classical Core Logic C+ does this.

Likewise, in the empirical testing of scientific theories (assuming these are expressed
at first order—Quine’s ‘Grade A idiom’), we need to be able to derive all
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possible predictions ϕ on the assumption that certain boundary and initial
conditions will hold. The latter must at least be logically consistent with the
theories being tested. The set � involved would therefore contain both the
scientific hypotheses being tested, and the statements of the relevant boundary
and initial conditions for the experiment to be carried out. Moreover, any
such prediction ϕ must itself be falsifiable—even if it turns out to be true. We
have seen that both the mathematical case and the empirical scientific case
are instances of the special case of Metatheorem 5 in the ‘middle range’ of the
logical spectrum we have described.

It now follows that Classical Core Logic C+ enables one to carry out all
the derivations that might be called for, both in mathematics and in empirical
science.

There is nothing more (that this author can see) that one could demand of a
‘background logic for science’ than its soundness and these last three spectrum-
straddling completeness results. Collectively they satisfy all our epistemic needs
in the deductive reasoning involved in mathematics and science. Clearly, the
system C+ caters for all those needs.

We offer the foregoing properties of C+ as the explicating set R of require-
ments on a logic for it to be suited for science. The present author invites
rigorous statements of yet further requirements from those who believe they
are entitled to require yet more of a logic for it to be ‘suited for science’. We
also offer the system C+ as a perfect instance of the counterexample 
 as it
figures in the second diagram in Section III.

Note that any defender of Williamson’s thesis, if they were to produce some
further requirement ρ to augment R, would still face the task of establishing
that C+ does not satisfy ρ. Given the track record thus far, however, of all the
exigent demands that C+ does satisfy, there is reason to be sanguine that such a
defender would not, in the end, prevail. We also note that it would be fruitless
for any defender of Williamson’s thesis to advance, as a further requirement
ρ, that the logic be relevant—that is, that it avoid the infamous first and second
Lewis Paradoxes, and ensure that the premises of any of its proofs be suitably
relevantly connected with its conclusion (in a way that would itself require
explication). For, by the explicative work and main result of Tennant (2015c),
the Core systems already have that covered. Moreover—and ironically—if
such a ‘relevance requirement’ ρ were to be proferred, it would be to the great
embarrassment of the other side (that is, the anti-substructuralists). Classical
Logic fails to satisfy it. So too does Intuitionistic Logic. And this is because
these two standard systems are fully structural !

VII. WILLIAMSON’S WORRY ABOUT SUBSTRUCTURAL LOGICS

Let us now examine more closely the argument against substructural logics
that Williamson (2018) advances. On the strength of this argument, Williamson
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concludes that substructural logics are ‘ill-suited to acting as background logics
for science’. Since the Core system C+ is a substructural logic as explained
above, this conclusion would imply that that system too is ‘ill-suited to acting
as [a] background [logic] for science’. This latter contention, however, collides
with the foregoing metatheorems concerning C+. The question therefore
arises: where is the mistake in Williamson’s argument?

Let us focus on the relevant part of Williamson’s reasoning. At p. 413 one
reads the following:

Closure operations have some standard structural features:[fn]

i. If � ⊆ � then Cn(�) ⊆ Cn(�)
ii. � ⊆ Cn(�)
iii. Cn(Cn(�)) ⊆ Cn(�)

Arguably, all three features are assumed in the ordinary testing of scientific theories.
There is no limit to the length of permitted chains of reasoning, so consequences of
consequences of � are consequences of �, as (iii) says. Even a zero-length chain of
reasoning counts, so members of � are consequences of �, as (ii) says. Finally, if � ⊆ �,
then we can trivially reason from � to each member of �; since we can reason from �

to each member of Cn(�), Cn(�) ⊆ Cn(�), as (i) says.[fn]
Together, (i)–(iii) imply all the standard structural rules for a consequence relation,
including Cut, which in this notation says: if A ∈ Cn(�) and B ∈ Cn(� ∪ {A}) then B ∈
Cn(� ∪ �)[fn]
. . .
In general, substructural logics are ill-suited to acting as background logics for science.

The defect in this argument is where Williamson writes

There is no limit to the length of permitted chains of reasoning, so consequences of consequences

of � are consequences of �, as (iii) says. [Emphasis added.]

We note with interest that the way the operation Cn is being deployed here
by Williamson makes it clear that it is to be understood as being generated
by the deducibility relation of the logic in question, presumably generated by the
rules of inference that the system affords. With the important phrase ‘permit-
ted chains of reasoning’, Williamson is clearly talking of inference and proof
within a deductive system. Our ensuing critique of Williamson’s argument can
therefore, in all fairness, be carried out with reference only to the (syntactic)
deducibility relation, rather than with reference to any accompanying semantic
relation of logical consequence.12

Let us now examine how what we have set out above about the Core systems
applies to what Williamson has argued. For Williamson’s � in the quote above,
the reader is invited to take {P, ¬P}. One C-consequence of this � is P ∨ Q.

12 Should the defender of Williamson wish to resort to the semantic construal of ‘chains of
reasoning’, however, we shall content ourselves here with entering the comment that that move
on Williamson’s behalf can be blocked as well.
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Another C-consequence is ¬P (trivially). A C-consequence of these two C-
consequences of this � is Q. By Williamson’s principle (iii), Q should be a
C-consequence of this �, i.e., of {P, ¬P}. But it is not. Indeed, Q is not even a
C+-consequence of {P, ¬P}. The whole point of the Core systems is that they
avoid Lewis’s notorious First Paradox (at the level of the turnstile).

The reader might say: ‘Did not Williamson give a completely general argu-
ment for his principle (iii)?’ The answer is affirmative, and it remains to enter
a judgement as to the validity of that argument.

Bear in mind that the argument was intended to render the conclusion
that (unrestricted) cut should hold. The very least that one requires of an
argument of this kind is that it not be question-begging. It is Williamson’s
claim that consequences of consequences of � are consequences of � that is in error. The
sole reason he offered for this claim was that there is no limit to the length of permitted
chains of reasoning. So, he said, consequences of consequences of � are consequences of �.
What this amounts to is the following non-sequitur, in the context where
sequent calculi are chosen as the formal systems for regimenting the reasoning
involved:

Sequent proofs can be as long as one likes; so, one can apply (unrestricted) cut in forming
them.

Against this, we simply point out: sequent proofs in Classical Core Logic can
be as long as one likes, but the system contains no rule of cut.

What the observation about unbounded length of sequent proofs really
entails is only that one might wish to ‘string proofs together’ (not necessarily
always linearly), by superimposing the conclusion of one onto a premise of
another. According to Metatheorem 1, however, the epistemological point
of doing so is more than adequately accommodated in our use of the Core
systems. Proofs � and � that are strung together (the conclusion ϕ of the
sequent proved by � being a premise of the sequent proved by �),

� �
� : ϕ ϕ, � : ψ,

effectively deliver a proof [�, �] of (a potentially even stronger) subsequent of
the target sequent �, � : {ψ} that one is concerned to prove.

Note that we are not saddling Williamson here with an overly ‘linear’
conception of the structure of deductive reasoning, a structure that in general
involves partial orderings of sentences in tree-like fashion. The reader should be
alerted to the fact that the use of multiple interpolated lemmas (in mathematical
reasoning, for example) is wholly accommodated by the Core systems. Suppose
one uses sets �1, . . . , �n of one’s available set � of mathematical axioms to fur-
nish Core proofs �1, . . . , �n of lemmas λ1, . . . , λn, respectively, and then one
uses a further set �0 of axioms, along with the lemmas, to furnish a Core proof
� of the conclusion θ. On the usual conception of ‘stringing proofs together’,
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one would be able to form a tree-like proof (a natural deduction) like this:

�1 �n

�1 · · · �n

�0, (λ1), ,(λn )︸ ︷︷ ︸
�
θ

.

This would be a proof of the conclusion θ from the combined set of axioms
�0 ∪ �1∪ . . . ∪ �n. In the standard Gentzen–Prawitz system of natural
deduction, one can form the proof by accumulation exactly as depicted. And
if one were working instead in the standard sequent calculus of Gentzen, which
contains the rule of cut, one could apply the latter rule n times to the sequent
proofs involved, to the same overall effect:

�n

�n :λn

...

�2
�2 :λ2

�1
�1 :λ1

�
�0, λ1, . . . , λn :θ

cut
�1, �0, λ2, . . . , λn :θ

cut
�2, �1, �0, λ3, . . . , λn :θ

...
�n−1, . . . , �1, �0, λn : θ

cut
�n , �n−1, . . . , �1, �0 : θ

Now, the natural-deduction and sequent-calculus formulations of the Core
systems, as already remarked, are deeply isomorphic.13 And they deliver
the same cumulative result (indeed, very often, something even better—see
the italicized phrases in the sentence that follows) in the following sense. As
Metatheorem 1 tells us, there is an effective binary operation [�, �] on
Classical Core proofs that ensures that

[�n , [�n−1, . . . , [�2, [�1, �]] . . .]]

is a Classical Core proof either of θ or of ⊥ from some (possibly proper) subset of
�0 ∪ �1 ∪ . . . ∪ �n.

The admissibility of cut therefore guarantees deductive progress via ‘tran-
sitivity’ of deduction in a way that is, if anything, even stronger than what is
afforded the Classical logician by having the rule of cut in their logical sys-
tem. Whenever the ‘exact’ target sequent that is to be ‘had’ by unrestricted
applications of cut within the Classical Logician’s system happens to elude
the Classical Core logician, the sequent that the latter comes up with, as a
result of applying the operation [ , ] in the manner illustrated above, will be

13 See footnote 1.
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a possibly logically stronger, and certainly no weaker, subsequent of the ‘exact’
target sequent.14

Summary: The foregoing considerations justify the following methodological
and metalogical conclusions. Contra Williamson,

(i) the substructural logic C+ is adequate for the regimentation of the de-
ductive reasoning involved in the hypothetico-deductive method in the natural
sciences (as a matter of fact, so too is C);

(ii) the substructural logic C+ is adequate for the regimentation of the
deductive reasoning involved in classical mathematics; and

(iii) the substructural logic C is adequate for the regimentation of the de-
ductive reasoning involved in constructive and intuitionistic mathematics.

REFERENCES

Bell, J. L. and Slomson, A. B. (1969) Models and Ultraproducts. Amsterdam: North Holland.
Chang, C. C. and Keisler, H. J. (1977) Model Theory (Studies in Logic and the Foundations of Mathematics,

Vol. 73). Amsterdam: North Holland.
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